Spectacular badland on rhyolite tuff in North Hungary

Gergely Horváth horvger@caesar.elte.hu

COMLAND 2016

Rhyolite tuffs

In north Hungary at several different places odd greyish white walls and other barren whitish patches can be seen: outcrops of rhyolite tuffs

Interesting and attractive mezo- and microforms, formed mostly by erosional processes, can be seen

The biggest outcrop at village Kazár is the 'only Hungarian badland'

The Karancs–Medves Region

Novohrad–Nógrád Geopark 1587 km² S L O V A K I A 336 km² in Slovakia

1251 km² in Hungary

Main values of the geopark

16 natural value of2 international,12 national and2 localimportance

75 cultural value:1 international,38 national and36 localimportance

Main determinants of landscape diversity

The diversity is due - to the varied rocks descending from different eras

to the young tectonic movements
to the geomorphic processe often changing both in time and space

Geology

- Oldest rocks in embankment: less known metamorphic rocks

- mainly from Neogene and partly Palaeogene sediments: near-shore neritic sediments such as sandstone, clay marl and schlieren are dominant

 and Neogene volcanic rocks: rhyolites, andesites and basalts from different volcanic epochs

- lavas and tuffs

Lowest surfaces are covered by mainly fluvial sediments: sands, sandy gravels, pebbles Frequent tectonic movements Landscape is determined by series of faulted and erosionally dissected hilly ridges

The relief

Variagated hilly lands and middle mountains

Considerable diffences in altitude between valley bottoms (150–200 m) and tops (600–700 m)

- max. Karancs, 729 m

Significantly dissected

relative relief 100-200 m/km², partly > 300 m/km²
valley density 3–5 km/km², partly > 7 km/km²,
in some cases ~ 10 km/km²

Pétervására Sandstone Formation

Dominant rock type

End of the Oligocene - beginning of the Miocene:, sea continuously changing in extension and deepness - varied, partly extremely thick sediments **Northeast:** sandstone dominant - upper beds: containing glauconite - spectacular macro- and microforms **Heteropic facies: very fine-grained aleurolites** (Schlieren)

Salgótarján Brown-coal Formation Eggenburgian and Ottnangian ages: warm,

humid subtropical climate

- swampy environment
- historically important brown-coal
- great industry based on it

Gyulakeszi Rhyolite Tuff Formation

- The formation known as "lower rhyolite tuff"
 Ottnangian age beginning of volcanic activity
 Greyish white, white, biotitic, pumiceous rhyoliterhyodacite; usually thick-bedded and poorly layered
- The formation occurs on the surface in several parts of the North Hungarian Middle Mountains
 Famous outcrops in the Karancs-Medves Region, and in the Bükkalja (the southern foreland of the Bükk Mountains)

Gyulakeszi Rhyolite Tuff Formation

Mainly ignimbrites, originated from episodes of intensive volcanic eruptions repeated two to four times Heavy explosions took place **Enormous mass of volcanic pyroclasts** The formation consist of pumice tuff (89 %), dust tuff (5 %) and coarse lithoclastic tuff (6 %, mainly pumice fragments), which determines the morphology of the outcrops

Geological map of North Hungary Rhyolite tuffs

Gyulakeszi Rhyolite Tuff Formation

- Phraeotomagmatic activity, typical ignimbites
- Seperated small cones, necks, or line of craters
- Main centre is not know; products cover big area, layers thickness 10-30 m
- Has also been discovered in several boreholes throughout the country and its thickness varies between 30–400 m
- The radiometric-palaeomagnetic age of the formation was previously considered to be 18.5–21 million years, marking the Ottnangian Stage

- According to a recent radiometric age measurement (Pálfy et al. 2012) the deposition of the tuff occurred later, only 17 million years ago, in the Carpathian Stage

Main characteristic of outcrops

Typical barren landscape

Surface evolution

Increasing barren surface

Surface evolution

Gully development

Human impact

Quick development along roads

Human impact

Deforestation and stock raising triggers erosional processes

Human impact

S all

Result: irreversible land degradation

Kazár

Geological map of North Hungary Rhyolite tuffs

Kazár badland from the air

Area ~1 ha

The biggest outcrop

Altitude 270-300 m

Gully erosion

Treshold geomorphology

Short periods with intensive precipitation result in extreme quick erosional processes

Complex surface development

Formed by erosion, suffosion, mass-movements

Kazár badland suffosion cavities orm

Natural cave made by suffosion

Gyulakeszi Rhyolite Tuff Formation

Eroded surface with spectacular microforms Rákóczibánya

Spectacular microforms

Candle-like microforms Vizslás

Hoodoo-like outcrops Mátracserpuszta

Spectacular forms

Secondary forms

Dried precipitation of soap-like wet weathered tuff

Conclusion

Rhyolite-tuff surfaces are vulnerable, strongly damageable

- Human impacts (deforestation, stock-raising, alteration of runoff etc.) result in triggering barren landscape
- Landscape development consists of quick, intensive and slow, unobservable periods
- However, eroded surfaces can constitute spectacular landforms
- Microforms are especially notable on rhyolite tuff surfaces

Geological map of North Hungary Rhyolite tuffs

Ipolytarnóc, "prehistoric Pompeii" won "European Diploma"

Sandstone surface covered by rhyolite tuff

Fossil footprints at Ipolytarnóc

- volcanic ash buried a subtropical jungle

under the rhyolite tuff 3,000 animal footprints of 11 species preserved on sandstone surface

one of the world's richest fossil footprint site

Fossil footprints

Completely undamaged petrified footprints of extinct animals: rhinos, birds, carnivores and deer-like animals

Dating back to the Lower Miocene period

Have remained on the surface due to the big debris of a pyroclastic flow that has buried the once existed habitat Petrified trunk

Fossil footprints.

Kubinyi, F.-Vahot, I. 1864

Petrified trunk

Miocene leaf fossil

Thank you for your attention!